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By fusion with sodium hydroxide followed by a hydrothermal reaction, fly ash and AI- 
enriched fly ash were converted into Na-X and Na-A zeolites, respectively. The authentic 
Na-X, Na-A and fly ash zeolites as well as their amorphous precursors have been 
characterized by IR, 29Si and 27AI MAS NMR, XPS/AES, TG, and comparative ion-exchange 
studies of Cs and Kwith Na in zeolite samples. It appears that the same structural unit with 
a terminal OH, such as a sodalite unit, was formed in the induction period of the 
hydrothermal reaction for Na-X and Na-A, and then cross-linked through D4R and D6R 
external linkages to build up the zeolite framework of Na-A and Na-X, respectively. 

1. Introduction 
Coal fly ash, which is formed as a waste by-product 
at coal-fired power plants, is an agglomerate of 
spheres or cenospheres of 1-100 gm in diameter and 
contains silicon and aluminium as the major elements 
['1, 2]. 

Hydrothermal treatment of coal fly ash with a so- 
dium hydroxide solution at 373 K under vigorous 
agitation gives various types of zeolites such as 
Na-P1, Na-A and hydroxysodalite, where a zeolite 
zone is formed like an egg-white covering the central 
core of fly ash particles [3]. By fusion with sodium 
hydroxide followed by the hydrothermal reaction at 
373 K without stirring, fly ash and aluminium-en- 
riched fly ash were favourably converted into Na-X 
and Na-A zeolite, respectively [4]. In these hydrother- 
mal reactions, zeolites 'were abruptly crystallized 
after an induction period, from amorphous alumino- 
silicate gels which existed during the induction period 
[5]. 

In the present work, Na-X, Na-A, and fly ash 
zeolites and their amorphous precursors have been 
characterized in order to elucidate the crystallization 
processes by following analytical methods: infrared 
spectroscopy (IR), magic angle spinning nuclear mag- 
netic resonance (MAS NMR), X-ray photoelectron 
(XPS) and Auger electron (AES) spectroscopy and 
thermogravimetric (TG) analysis. 

Comparative ion-exchange studies of Cs and 
K with Na-X are also described, providing evidence 
for the formation of zeolite frameworks by double 
six-membered ring (D6R) linkages of sodalite units. 

2. Experimental procedure 
2.1. Zeolite synthesis 
Hydrothermal reactions for Na-X [6] and Na-A [7] 
zeolite synthesis from pure reagents were carried out 
as follows. A clear solution of sodium aluminate in 
sodium hydroxide was mixed with an aqueous solu- 
tion of sodium silicate in an appropriate ratio to 
adjust the starting composition to 7.38 NazO'A1203" 
5.03 SIO2-400 H20 for Na-X [6] and 3.42 Na20" 
A1203"2.00 SIO2"200 H20 for Na-A [7], respec- 
tively. A slurry thus formed as agitated magneti- 
cally for 18 h at room temperature, and each 10 ml 
of the slurry was heated at 373 K in a sealed Teflon 
tube for a given period. The solid phase was filtered, 
repeatedly washed with water, and dried overnight at 
373 K. 

Procedures for zeolite synthesis from fly ash have 
been described elsewhere [4]. 

2.2. R e a g e n t s  
Sodium metasilicate hydrate (Na20 19.3%, SiOz 
21.5%, H20 58.0%) and sodium hydroxide (>99%) 
were purchased from Wako Pure Chemical Industries, 
Ltd, Osaka, and were used as supplied. Sodium 
aluminate (Na20 35.5%, AlzO3 34.8%) obtained 
from Wako was dissolved in water, and the aqueous 
solution was boiled, cooled to room temperature, 
and filtered to remove the small amounts of im- 
purities such as iron hydroxide and suspended 
solids. 
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2.3. Analysis 
IR spectra in the range of 1500 ,-~ 250 cm- ~ were meas- 
ured for samples pelletized with CsI with a Hitachi 
270-50 spectrometer. 

X-ray photoelectron and Auger spectra (AES) for Si 
and A1 were measured with an Ulvac-Phi 5500 appar- 
atus irradiated with MgK=, and the results were 
compared on a chemical state plot: two-dimensional 
correlation of photoelectron binding energies (2p) and 
Auger kinetic energies (KLL). The observed binding 
and kinetic energies were calibrated with 284.6 eV [8] 
for C ls electron. 

The 29Si and 27A1 NMR spectra were obtained at 
53.67 and 70.40 MHz on a Hitachi R-3000 FT-NMR 
spectrometer employing magic angle spinning at 
6 kHz. 29Si and 27A1 chemical shifts (in ppm) were 
referenced to external standards of 1 M A1C13 aqueous 
solution (AI(H20)~ +) and tetramethylsilane (TMS), 

respectively. 
Powder X-ray diffraction (XRD) patterns were 

measured using CuK= radiation by the MXP system 
of MAC Science Co., Tokyo. Crystallinity of zeolite 
samples was defined [4] as the X-ray intensity ratio to 
well-crystallized zeolites at given diffraction faces of 
Na-A (200) and Na-X (1 1 1). 

TG was performed using a TG/DTA 30 analyser of 
Seiko Instruments Inc., Tokyo, where samples were 
exposed overnight to moist air at 298 K in a desic- 
cator. 

Ion-exchange of Cs and K with Na- X carried out 
by the immersion of zeolite samples in 0.1 M CsC1 or 
0.1 M KC1 solution under vigorous vibration for 
4 days at 298 K. Concentrations of Na and Cs or K in 
liquid were determined by a Perkin-Elmer 5000 
atomic absorption spectrometer. Analysis for solid 
phases was also made after decomposition of the 
zeolite sample with 1 M HC1. 

The chemical compositions of zeolite samples 
were determined by an inductively coupled plasma 
atomic emission spectrometer (SPS-1500, Seiko In- 
struments Inc., Tokyo) after decomposition with 1 M 
HCI. 

3. Results and discussion 
3.1. Formation of zeolites under 

hydrothermal conditions 
Fig. 1 shows crystallinity and composition of products 
during the hydrothermal reaction by the established 
procedure for authentic Na-A [7] and Na-X [6]. The 
crystallinity of both Na-A (Fig. la) and Na-X 
(Fig. lb) increased abruptly after 1 h and c. 4 h of the 
induction period, respectively, followed by an increase 
to almost 100% crystallinity as indicated by sigmoid 
curve (Fig. lb) becoming a plateau as 100% crystal- 
linity was approached. In contrast, the molar ratio of 
Si/A1 and Na/A1 in solid phase products changed 
rather slightly in both series of run (Fig. la and b) 
irrespective of the abrupt increase in crystallinity, sug- 
gesting that a precursor with the composition close to 
the target zeolite had already formed in the induction 
period. Thus the amorphous solid products in the 
hydrothermal reaction at 1 h for Na-A and at 2 h for 
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Figure ] Transition of zeolite crystallinity and composition in hy- 
drothermal reaction for Na A (a) and Na-X (b); (3, crystallinity; A, 
Si/A1; i,, Na/A1. 

Na-X were taken in the present work as samples for 
amorphous precursors to compare with the well-cry- 
stallized zeolite samples. The hydrothermal reaction 
product with intermediate crystallinity was not used 
for characterization, because the product should have 
properties of a mixture of large zeolite crystals and 
amorphous compounds [5]. 

3.2. IR evidence for linkage of sodalite unit 
to build up zeolite framework 

3.2. 1. IR spectra and assignment for Na-X, 
Na-A zeofite and their amorphous 
precursors 

Fig. 2 compares IR spectra of Na-X (curve b), Na-A 
(curve d) zeolite and their amorphous precursors 
(curves a and c). Na-A zeolite is composed of a molar 
ratio of Si/A1 = 1, and the assignment of IR bands 
(Fig. 2, curve d) is rather straightforward [9]: asym- 
metric stretching (1016 cm- t) and bending vibration 
(471 cm -1) of T-O bond (where T = Si or A1) in TO4 
tetrahedra, and double four-membered rings (D4R, 
562 cm- 1) and pore opening (382 cm- 1) of external 
linkages, respectively. 

In contrast with Na-A, faujasite zeolites Na-X and 
Na-Y with various Si/A1 ratios are known to exist. 
Fig. 3 shows a linear decrease in frequency of IR band 
with an increase in A1 content in the faujasite zeolite 
[9] for each asymmetric stretching (curve a), symmet- 
ric stretching (curves bl and b2), D6R (curve c), be- 
nding of T-O bond (curve d), and pore opening (curve 
e). It is of interest to note that the absorption band of 
curves a, b2 and d in Fig. 3 were extrapolated to zero 
A1 content in good agreement with values observed for 
SiO2 gel [10, 11]. The composition of the well-crystal- 
lized Na-X zeolite prepared in the present work was 
Si/A1 = 1.45, i.e. A1/(A1 + Si) = 0.41, as given in Fig. lb 
(white triangle at 8 h). The bands observed for the 
Na-X zeolite were plotted in Fig. 3 as white squares in 
good agreement with Fig. 3, curves a to e, and thus 
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Figure 2 IR spectra for Na X (b), Na A zeolite (d) and their 
amorphous precursors ((a) for Na-X, (c) for Na-A). 

assigned to asymmetric stretching (990 cm-i),  sym- 
metric stretching (748 cm-1, 677 cm-1), bending vi- 
bration (468 cm-1) of T-O bond, D6R (568 cm-1) 
and pore opening (375 cm- 1), respectively. 

The spectrum of the amorphous precursor (Fig. 2, 
curve a) for Na-X was rather simple and broad 
as compared with that of crystalline Na-X (Fig. 2, 
curve b), and three bands at 1004, 708 and 446 cm-1 
shown as black squares in Fig. 3, should be assigned 
to asymmetric stretching (curve a), symmetric 
stretching (curve b2) and bending vibration (curve d), 
respectively. 

A shoulder at 865 cm- 1 (Fig. 2, curve a) observed in 
the amorphous precursor for Na-X presumably due 
to vibration of T-OH, because of a broken straight 
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Figure 3 Shift of IR bands for faujasite zeolite with A1 content in 
zeolite framework; �9 faujasites [9]; G, SiO 2 gel [10]; r~, Na-X 
(present work); I ,  precursor for Na-X (present work). 

line drawn in parallel with Fig. 3, curves a and b, is 
reasonably extrapolated to the silanol Si-OH [10] at 
950 cm 1. Furthermore, in both precursors for Na-X 
and Na-A, the bands at c. 870 cm-1 disappeared on 
heating the samples at 723 K for 1 h, similar to SiO= 
gel [10, 11], signifying the presence of T-OH bond in 
the precursors. Stojkovic and Adnadjevic [12] have 
recorded IR spectra for sodium aluminosilicate gels of 
not yet crystallized Na-A zeolite, similar to Fig. 2, 
curve c, whereas a distinct band was not recognized at 
c. 870 cm 1, presumably because T-OH bond disap- 
peared before ]R measurement as the samples were 
dried at a high temperature of 383 K. 

The difference in structure between Na-X and 
Na-A is essentially the difference in the mode of link- 
age of the sodalite unit in building up the zeolite 
framework. Thus the spectra of amorphous precursors 
for Na-A (Fig. 2,curve c) and Na-X (Fig..2,curve a) 
were similar as anticipated, and the bands observed 
for Na-A precursor could be assigned as above. 

3.2.2. Linkage o f  sodal i te  uni t  
The bands at 568 and 375 cm- 1 (Fig. 2b), and at 562 
and 382 cm 1 (Fig. 2, curve d), which were absent in 
amorphous species (Fig. 2, curves a and c), appeared in 
crystalline Na-X and Na-A, respectively, and were 
consistent with the assignments to double ring 
linkages (D6R for Na-X, D4R for Na-A) and pore 
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3.2.3. Fly ash zeoli tes 
Na-X and Na -A zeolite were formed from coal fly ash 
and Al-enriched fly ash, respectively, by fusion with 
sodium hydroxide and the succeeding hydrothermal 
treatment at 373 K after an induction period I-4]. The 
IR spectra for fly ash zeolite and their amorphous 
intermediates were quite similar to that for corre- 
sponding authentic zeolite Na-X, Na-A and their 
precursors, respectively. 

3.3. Cs ion exchange  b e h a v i o u r  of  N a - X  
zeol i te and the a m o r p h o u s  p recursor  

A faujasite-type zeolite such as Na-X and N a Y  in- 
volves D6R linkages in the structural framework. It is 
well known that Na ions in the D6R hexagonal prism 
can be exchanged by small ions such as Li and K but 
not by large ions such as Cs and Rb [13-15]. Thus the 
difference in K and Cs uptake in the comparative 
ion-exchange, if observed, would provide evidence for 
the presence of the D6R linkages in a zeolite sample. 

Fig. 4 compares Na-K (triangles) and Na-Cs 
(circles) ion-exchange isotherms at 298 K for Na-X 
zeolite (Fig. 4b) and for the precursor (Fig. 4a). Fig. 4b 
shows that all of the Na ions in the Na-X zeolite could 
be exchanged by K ions but only 65% of Na ions, 
which was extrapolated to 100% in abscissa of Na-Cs 
isotherm (circles in Fig. 4b), could be replaced by Cs 
ions in good agreement with the literature [15]. On 
the other hand, complete replacement of Na ions was 
accomplished for Na-X precursor by either K or Cs 
ions, as shown in Fig. 4a. 

Comparative Cs/K ion-exchange behaviour ob- 
tained above signifies the D6R linkages for well- 
crystallized Na-X zeolite. It is of interest that the 
hydrothermal reaction product for Na-X includes 
exchangeable Na ions regardless of crystallinity of the 
zeolite. 

3.4. TG of zeol i tes  
Fig. 5 compares the TG curves for Na-X (b), Na-A (d) 
and their amorphous precursors (a and c) after 
saturated with moist air at room temperature. Solid 
lines and broken lines show samples dried at 373 and 
723 K prior to exposure to moisture, respectively. 

The TG curves for well-crystallized zeolites (Fig. 5b 
and d) show reproducible weight loss irrespective of 
the preheating temperature: solid and broken lines are 
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opening. In contrast, the terminal T-OH bond was 
present in both precursors but not in the crystallized 
zeolites of both Na-X and Na-A. 

Differences and similarities in IR spectra among 
zeolites and their amorphous precursors can be inter- 
preted as that for the same structural unit with ter- 
minal T-OH, for example like a sodalite unit, being 
formed during the induction period of the hydrother- 
real reaction, and then coupling together through de- 
hydration of the terminal OH, leading to either D6R 
or D4R linkages, and finally building up the crystal- 
line zeolite framework of Na-X or Na-A, respectively. 
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Figure 4 Ion-exchange isotherms of Cs/K with Na-X (b) and the 
precursor (a) at 298 K; O, Cs; A, K. 

superimposed together, signifying reversible adsorp- 
tion/desorption of water. 

The TG curves for zeolite precursors dried at 373 K 
(solid lines in Fig. 5a and c) were rather similar to 
those of well-crystallized zeolites (Fig. 5b and d), while 
samples preheated at 723 K (broken lines in Fig. 5a 
and c) showed essentially no change in the weight. The 
weight loss given by solid lines in Fig. 5a and c were 
presumably due to dehydration of terminal OH in the 
precursor, such as a sodalite unit. A sample preheated 
at 723 K has finished the structural dehydration and 
retains no available site for water adsorption on expo- 
sure to moist air. Thus the dehydrative linkage of the 
structural unit (sodalite unit) in the precursor may 
occur thermally, but a hydrothermal reaction is essen- 
tial to build up the zeolite framework. 

3.5.  =gSi a n d  27AI MAS NMR 
Fig. 6 shows 298i MAS NMR spectra for Na-X, Na-A 
zeolite and their amorphous precursors. The spectrum 
of crystalline Na-X zeolite (Si/A1 = 1.45) showed five 
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Figure 6 zgSi MAS NMR spectra for Na-X (b), Na-A zeolite (d) 
and their amorphous precursors ((a) for Na-X, (c) for Na-A). 

signals at -84.3, -88.7, -93.5, -97.9 and -101.8 ppm 
(Fig. 6, curve b) with decreasing intensity in this 
order, in good agreement with that reported for Na-X 
with Si/A1 = 1.35 [16], of which peaks should be as- 
signed to Si(OAI)r Si(OAI)3(OSi), Si(OA1)e(OSi)z, 

Si(OA1)(OSi)3 and Si(OSi)4, respectively. In contrast, 
the spectrum for the amorphous precursor for Na-X 
showed a single, broad signal at c. - 8 5  ppm (Fig. 6, 
curve a). In the crystallization of Na-A, a shift from 
-84.3 to -88.8 ppm with sharpening of the peak 

was observed in 29Si NMR spectra (Fig. 6, curves 
c and d), as reported in the literature [17]. The sharp 
peak at -88.8 ppm (Fig. 6, curve d) for Na-A zeolite 
was assigned to Si(OA1)4. 

In the spectra of 27A1 MAS NMR given in Fig. 7, 
on the other hand, a strong peak of tetrahedral A1 at c. 
58 ppm was observed for every sample of Na-X (curve 
b), Na-A (curve d) zeolite and their amorphous pre- 
cursors (curves a and c) and was assigned [17, 18] to 
AI(OSi)4 following the Loewenstein's law E19] to pro- 
hibit AI-O-A1 bond. Sharpening of the eTA1 peak was 
again observed after crystallization of both zeolite 
Na-X and Na-A. 

It is well known that chemical shift in 29Si MAS 
NMR spectra for many silicate compounds [20,21] 
and zeolites [22] is dependent on the mean distance of 
the Si-O bond and/or mean angle of Si-O-T. Thus 
the broadening in 298i (Fig. 6a and c) and 27A1 

(Fig. 7, curves a and c) NMR peaks for both precur- 
sors might be interpreted as the formation of Si-O-T 
bonds with a wide distribution of distance and angle 
in the induction period for Na-X and Na-A synthesis. 
The simultaneous sharpening of 29Si (Fig. 6) and ZVA1 
(Fig. 7) peaks during crystallization of the zeolite sug- 
gests that flexible Si-O-T bonds in the amorphous 
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Figure 7 27A1 MAS NMR spectra for Na-X (b), Na-A zeolite (d) 
and their amorphous precursors ((a) for Na-X, (c) for Na A). 
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precursor are transformed into rigid bonds with a dis- 
tinct coordination number in the well-crystallized 
zeolite. The suggestion was strongly supported by the 
fact that similar sharpening of peaks was observed in 
IR spectra, as mentioned Xbove. 

Application of solid-state MAS NMR to fly ash 
zeolite was unfavourable because of contamination 
with magnetite (F%O4) included in fly ash as a raw 
material [4,23], and therefore was not carried out in 
the present work. 

3.6. XPS-AES chemical state plots of Si and 
AI for zeolites 

Two-dimensional plot of photoelectron binding energy 
and Auger kinetic energy permits a more accurate 
description of the chemical state [24, 25]. The plots of 
Si and A1 for a series of aluminosilicate zeolites are 
correlated on a single line, but simple oxides and non- 
zeolite minerals lie on a different line [8, 24, 25]. 

Figs 8 and 9 show the chemical state plots of Si and 
A1, respectively, for Na-X, Na-A, fly ash zeolite and 
their amorphous precursors, where data for Na-P1, 
Na-Y zeolite and hydroxy-sodalite are also indicated 
for reference. In these figures, zeolites and the precur- 
sors were correlated on a single line, showing that the 
precursors were classified as a quasi-zeolite. Some 
disagreement between authentic and fly ash zeolite 
was observed, presumably arising from that fly 
ash zeolite was composed of zeolite and non-zeolitic 
sodium aluminosilicate [4]. It is of interest to 
note that in Figs 8 and 9, the plots of precursor for 
authentic Na-X and Na-A zeolites are rather close 
together, while the corresponding zeolites lie apart 
from each other. It seems likely that chemical states of 
Si or A1 are in a similar environment (sodalite unit) 
among the precursors formed in the induction period, 
and then the different characteristic of each zeolite 
species appears on building-up the crystalline frame- 
work. 
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4. Conclusion 
An amorphous precursor with a composition close to 
the target zeolite was formed during the induction 
period of a hydrothermal reaction for Na-X 
and Na-A zeolites. The IR spectra revealed that a 
structural unit with terminal OH was formed in the 
induction period, and then coupled together through 
dehydration of terminal OH to build up the zeolite 
framework of Na-X or Na-A. By comparative Cs/K 
ion-exchange studies, the formation of D6R external 
linkage was confirmed in crystallization of Na-X 
zeolite. 

Compar ing  298i  o r  27A1 MAS NMR spectra be- 
tween zeolites and their amorphous precursors, the 
transformation from flexible to rigid Si-O-T bond 
was suggested in the crystallization process of Na-X 
and Na-A zeolites. 

The IR spectra and XPS/AES chemical state plots 
of Si and A1 for both fly ash zeolites and their amorph- 
ous percursors were compatible with those for auth- 
entic Na-X and Na-A zeolites and their precursors, 
respectively. 
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